طراحی مدلی جهت پیش بینی بازده شاخص کل بورس اوراق بهادار(با تاکید بر مدلهای ترکیبی شبکه یادگیری عمیق و مدلهای خانواده GARCH)
Authors
Abstract:
در سالهای اخیر، توسعهی پردازندههای کامپیوتری موجب معرفی الگوریتمهای جدیدی برای پیشبینی دادههای مالی شده است که یکی از این الگوریتمها، یادگیری ماشین (Machine Learning) است. از اینرو در پژوهش حاضر به معرفی یک مدل ترکیبی از شبکه یادگیری عمیق (Deep Learning) و مدلهای منتخب خانواده GARCH جهت پیشبینی کوتاهمدت بازدهی روزانه شاخص کل بورس اوراق بهادار تهران پرداخته میشود. مهمترین ویژگی شبکه یادگیری عمیق در این است که بدون محدود بودن به مدلهای معین، میتواند خود را با نوسانات متغیرهای بازار هماهنگ و تعدیل نماید. در این پژوهش از میان مدلهای شبکه یادگیری عمیق، شبکه عصبی بازگشتی مبتنی بر حافظه کوتاهمدت و بلندمدت (RNN-LSTM) انتخاب و از مدلهای دارای حافظهکوتاه مدت GARCH و EGARCH در ساختار آن استفاده میشود. همچنین دو متغیر مستقل قیمت نفت و نرخ دلار در ساختار مدل ترکیبی، کمک فراوانی به آن در پیشبینی دقیقتر دادههای مالی میکند. نتایج تحقیق نشان میدهد که مدلهای ترکیبی دقت پیشبینی بالاتری نسبت به مدلهای تکی دارند. همچنین براساس معیارهای ارزیابی خطای پیشبینی RMSE و MAPE، مدل RNN-LSTM-EGARCH برپایه توزیع GED دارای خطای پیشبینی کمتری نسبت به 23 مدل دیگر دارد. در این راستا، معیار بررسی صحت پیشبینی دیبولد-ماریانو (DM) نیز یافتههای فوق را تایید میکند.
similar resources
پیش بینی بازده شاخص بورس اوراق بهادار با استفاده از مدلهای شبکه ها عصبی مصنوعی شعاع پایه
تا کنون برای پیش بینی بازده سهام و بازده شاخص از روش های متعددی استفاده شده است در این میان هوش مصنوعی و شبکه های عصبی مصنوعی یکی از روش های پیش بینی بازده شاخص بوده است. در حال حاضر به دنبال بررسی عملکرد شبکه عصبی شعاع پایه برای پیشبینی بازده شاخص هستیم. بدین منظور از شاخص بورس اوراق بهادار تهران استفاده شده است و عملکرد شبکه عصبی شعاع پایه و شبکه عصبی پرسپترون مقایسه شدهاند. نوع آزمون عملکر...
full textطراحی مدلی جهت پیش بینی بازده شاخص بورس (با تاکید بر مدل های ترکیبی شبکه عصبی و مدل های با حافظه بلندمدت)
این پژوهش به معرفی مدلهایی از ترکیب خانواده GARCH و شبکه عصبی مصنوعی، جهت پیشبینی بازدهی روزانه شاخص بورس اوراق بهادار تهران طی فاصله زمانی 1396-1387 میپردازد. وجود ویژگی حافظه بلندمدت در واریانس شرطی بازدهی شاخص کل بورس موجب شده تا علاوه بر مدلهای دارای حافظه کوتاهمدت GARCH و EGARCH در این پژوهش از مدلهای FIGARCH و FIEGARCH که دارای ویژگی حافظه بلندمدت هستند؛ استفاده گردد. ...
full textمقایسه عملکرد مدلهای شبکه عصبی مصنوعی واتورگرسیون برداری در پیش بینی شاخص قیمت و بازده نقدی
هدف این مقاله تجزیه و تحلیل های اقتصادی، پیش بینی صحیح و دقیق متغیرهای اقتصادی است. در این زمینه، روشهای مختلفی برای پیش بینی در اقتصاد وجود دارد، که از جمله آنها میتوان به مدلهای رگرسیون ، معادلات همزمان و... اشاره کرد. مدلهای سری زمانی نیز از جمله مدلهای اقتصادی می باشند که در آن پیش بینی مقادیر سری، بیش از هر چیز به عهده خودشان گذاشته می شود اما استفاده از روش های غیر کلاسیک در شناسایی مدل و...
full textپیش بینی بازده شاخص بورس اوراق بهادار با استفاده از مدلهای شبکه ها عصبی مصنوعی شعاع پایه
تا کنون برای پیش بینی بازده سهام و بازده شاخص از روش های متعددی استفاده شده است در این میان هوش مصنوعی و شبکه های عصبی مصنوعی یکی از روش های پیش بینی بازده شاخص بوده است. در حال حاضر به دنبال بررسی عملکرد شبکه عصبی شعاع پایه برای پیش بینی بازده شاخص هستیم. بدین منظور از شاخص بورس اوراق بهادار تهران استفاده شده است و عملکرد شبکه عصبی شعاع پایه و شبکه عصبی پرسپترون مقایسه شده اند. نوع آزمون عملکر...
full textتحلیل مقایسه ای کارآمدی مدلهای رگرسیون بردار پشتیبان، شبکه عصبی و arima با مدلهای ترکیبی در پیش بینی بازده شاخص بورس اوراق بهادار تهران
همواره پیش بینی روند شاخص بورس یکی از چالشهای پیشروی معاملهگران در بازارهای سرمایه بوده که این مساله به عنوان یک امر ضروری وکاربردی مطرح میشود .البته باید پیش بینی را مورد توجه قرار داد که با دقت بیشتری صورت گیرد و نسبت به نتایج واقعی مشاهده شده خطای کمتری داشته باشد. بنابراین با وجود تمام این شرایط ما نیازمند مدلی هستیم که بتواند با خطای کمتری بازده شاخص کل بورس را که موضوع مورد بررسی در این ت...
مقایسۀ مدلهای Riskmetric و GARCH در پیشبینی نوسانات شاخص بازده کل بورس اوراق بهادارتهران
پیشبینی نوسان در بازارهای مالی یک فعالیت بحرانی و کلیدی است و دارای حوزۀ تأثیرگذاری گستردهای میباشد که شامل سرمایهگذاری، ارزش گذاری اوراق بهادار، مدیریت ریسک و ایجاد سیاست پولی است. همانطور که مشخص است این موارد بوضوح از ارزش زیادی در تصمیم گیریهای اقتصادی برخوردار است بنابراین، توجه به این مسائل سبب ایجاد سؤالهایی از این قبیل میشود که چطور میتوانیم بطور مؤثری نوسانات را پیشبینی کنیم و آ...
full textMy Resources
Journal title
volume 11 issue 42
pages 138- 171
publication date 2020-03-20
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023